Fibrocartilaginous embolic myelopathy and traumatic IVDE

Luisa De Risio
DVM, MRCVS, PhD, Dipl ECVN,
RCVS recognised specialist in veterinary neurology
Head of Neurology/ Neurosurgery Animal Health Trust
Overview

- Pathophysiology
- Clinical presentation
- Diagnostic investigations
- Treatment
- Prognosis
What is fibrocartilaginous embolic myelopathy (FCEM)?
FCEM - pathophysiology

- Source of the fibrocartilage (FC):
 - nucleus pulposus
 - vertebral growth-plate
 - metaplasia of the vascular endothelium

- How does the FC gain access to the SC vasculature?
Arterial and venous blood supply
FCEM - pathophysiology

- Direct penetration of NP fragments into:
 - Spinal arteries
 - Spinal veins (arteriovenous anastomoses)
 - Sinusoidal venous channels within the vertebral bone marrow
 - Newly formed inflammatory BV within a degenerated IVD
 - Embryonic remnant BV within the NP
- Valsalva maneuver
- Sudden rise in intradiscal pressure > arterial BP
FCEM - Clinical presentation

- peracute (<6 hours) onset of nonprogressive and nonpainful (after the first 24 hours) and often lateralized neurological deficits (ND)
- physical activity at onset of ND in up to 80% of dogs
- sudden and transient hyperalgesia at the onset of ND in up to 61.5% of dogs
- lateralisation of ND in 52.8% to 86.5% of dogs
Sophie, 9 y, FS, EBT, peracute onset left hemiparesis and anisocoria
Bronson, 4y, 3m, SBT, acute onset severe monoparesis, normal myelogram
<table>
<thead>
<tr>
<th>Study</th>
<th>Total number of dogs</th>
<th>Number of dogs with AD and HD</th>
<th>Percentage of large or giant breed dogs</th>
<th>Age (years, median and range)</th>
<th>Male to female ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilmore 1987</td>
<td>24</td>
<td>AD* 19</td>
<td>79</td>
<td>5 (0.5-10)</td>
<td>1.2:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HD 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cauzinille 1996</td>
<td>72</td>
<td>AD* 26</td>
<td>54</td>
<td>5 (1-10)</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HD 36</td>
<td>75</td>
<td>4 (0.3-7)</td>
<td>1.3:1</td>
</tr>
<tr>
<td>Gandini 2003</td>
<td>75</td>
<td>AD* 54</td>
<td>74</td>
<td>6 (1-11)</td>
<td>1.7:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HD 21</td>
<td>81</td>
<td>5 (5-9)</td>
<td>1.6:1</td>
</tr>
<tr>
<td>Dunie-Meringot 2007</td>
<td>26</td>
<td>AD^ 26</td>
<td>54</td>
<td>4 (0.5-10)</td>
<td>1.4:1</td>
</tr>
<tr>
<td>De Risio 2007</td>
<td>52</td>
<td>AD° 50</td>
<td>81</td>
<td>6 (0.4-11.9)</td>
<td>2.5:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HD 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nakamoto 2009</td>
<td>26</td>
<td>AD° 26</td>
<td>16</td>
<td>5.6 (0.4-13.4)</td>
<td>1.3:1</td>
</tr>
<tr>
<td>Study</td>
<td>Total number of dogs</td>
<td>Number of dogs with AD and HD</td>
<td>Percentage of dogs with each neuroanatomic localization and/or site of the lesion based on histology or MRI</td>
<td>% of dogs with lateralisation of neurologic signs</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Gilmore 1987</td>
<td>24</td>
<td>AD 19 HD 5</td>
<td>C1-C5 16.7 C6-T2 20.8 T3-L3 33.3 L4-S3 29.2</td>
<td>70.8</td>
<td></td>
</tr>
<tr>
<td>Cauzinille 1996</td>
<td>72</td>
<td>AD 26 HD 36</td>
<td>C1-C5 3.8 C6-T2 3.8 T3-L3 42.3 L4-S3 50.0</td>
<td>80.8</td>
<td></td>
</tr>
<tr>
<td>Gandini 2003</td>
<td>75</td>
<td>AD 54 HD 21</td>
<td>C1-C5 5.6 C6-T2 11.1 T3-L3 37.0 L4-S3 43.3</td>
<td>64.8</td>
<td></td>
</tr>
<tr>
<td>Dunie-Meringot 2007</td>
<td>26</td>
<td>AD 26</td>
<td>C1-C5 15.4 C6-T2 19.2 T3-L3 34.6 L4-S3 30.8</td>
<td>73.1</td>
<td></td>
</tr>
<tr>
<td>De Risio 2007</td>
<td>52</td>
<td>AD 50 HD 2</td>
<td>C1-C5 0.0 C6-T2 28.9 T3-L3 26.9 L4-S3 44.2</td>
<td>86.5</td>
<td></td>
</tr>
<tr>
<td>Nakamoto 2009</td>
<td>26</td>
<td>AD 26</td>
<td>C1-C5 19.2 C6-T2 23.0 T3-L3 50.0 L4-S3 7.8</td>
<td>61.5</td>
<td></td>
</tr>
</tbody>
</table>
Differential diagnoses

- IM due to other sources of emboli
- Acute non compressive NP extrusion
- IVD extrusion (compressive)
- Haemorrhage (eg, secondary to coagulopathy)
- Neoplasia (intra- and extramedullary)
- Infectious and immune-mediated focal myelitis or meningomyelitis
- Vertebral fracture, subluxation/luxation
FCEM- Diagnosis

- **Definitive diagnosis** only histological
- Survey radiographs
 - rule out vertebral fracture, sub-luxation/ luxation, neoplasia and osteomyelitis/ discospondylitis
- Myelography
 - rule out compressive SC disease (IVD extrusion, neoplasia)
 - intramedullary pattern
- CT or CT- myelography
 - rule out compressive SC disease (IVD extrusion, neoplasia)
 - intramedullary pattern
- MRI
 - diagnostic imaging modality of choice
- CSF
FCEM- MRI
FCEM- CSF

- Normal

- Aspecific abnormalities:
 - xanthochromia
 - mild to moderate pleocytosis (7–84 WBC/ul)
 - elevated protein concentration (reported in up to 46% of dogs with HD of FCEM and in 44-75% of dogs with AD of FCEM)
FCEM- Treatment

- Nursing care
- Physical rehabilitation
- Neuroprotection
<table>
<thead>
<tr>
<th></th>
<th>Total number of dogs</th>
<th>Percentage of dogs with each neuroanatomic localization and/or site of the lesion based on histology or MRI</th>
<th>Percentage of dogs with nociception</th>
<th>Percentage of dogs with partial or complete recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C1-C5</td>
<td>C6-T2</td>
<td>T3-L3</td>
</tr>
<tr>
<td>Gilmore 1987</td>
<td>24</td>
<td>16.7</td>
<td>20.8</td>
<td>33.3</td>
</tr>
<tr>
<td>Cauzinille 1996</td>
<td>26</td>
<td>3.8</td>
<td>3.8</td>
<td>42.3</td>
</tr>
<tr>
<td>Gandini 2003</td>
<td>54</td>
<td>5.6</td>
<td>11.1</td>
<td>37.0</td>
</tr>
<tr>
<td>Dunie-Meringot 2007</td>
<td>26</td>
<td>15.4</td>
<td>19.2</td>
<td>34.6</td>
</tr>
<tr>
<td>De Risio 2007</td>
<td>52</td>
<td>0.0</td>
<td>28.9</td>
<td>26.9</td>
</tr>
<tr>
<td>Nakamoto 2009</td>
<td>26</td>
<td>19.2</td>
<td>23.0</td>
<td>50.0</td>
</tr>
</tbody>
</table>
Dogs with a lesion length–vertebral length ratio > 2.0 or a percent cross sectional area of the lesion ≥ 67% were significantly more likely to have an unsuccessful outcome than those with lower values for these parameters.
FCEM/ IM- cats

- 19 cats with a presumptive diagnosis of IM
- C1–C5 (30%), C6–T2 (30%), T3–L3 (25%), L4–S1 (15%)
- Inciting or predisposing causes
- Median time to recovery of ambulation was 3.5 days (3–19 days)
- 15 (79%) cats had a favourable outcome
- Median F up 3y 1m (6m- 10y 4m)

Acute non compressive nucleus pulposus extrusion (ANNPE)

- traumatic disc extrusion
- traumatic disc prolapse
- dorsolateral intervertebral disc “explosion”
- high-velocity–low volume disc extrusion
- Hansen type III intervertebral disc disease
healthy intervertebral disc (hydrated NP)
subjected to a brief excessive force (e.g. during vigorous exercise or following trauma) => sudden increase in intradiscal pressure
NP rapidly projected toward the spinal cord through a tear in the annulus fibrosus
spinal cord contusion
NP dissipates within the epidural space without resulting in a compressive mass
Hydrated nucleus pulposus extrusions

non-compressive

compressive

Beltran JASAP 2011
De Risio JAVMA 2009
ANNPE
Traumatic disc extrusion

- Laceration of the dura mater
- Penetration of the spinal cord parenchyma
- Subarachnoid-pleural fistula (Packer et al, VRUS 2004; 45, 523-527)
ANNPE- Clinical presentation

- Peracute (<6 hours) onset myelopathy
 - Associated with physical activity
 - Running, playing, or jumping 25/42 (60%) dogs
 - Traumatic event (witnessed or suspected) 17/42 (40%) dogs

De Risio JAVMA 2009
ANNPE- Clinical presentation

- Neurological deficits
 - referable to site and extent of the spinal cord injury
 - T3-L3 67% (28/42) dogs, C1-C5 (6), C6-T2 (6), L4-S3 (2)
 - spinal shock!
 - often lateralised: 62% (26/42) of dogs
 - non progressive after the first 24-48 hours
 - spinal hyperalgesia during palpation of the affected spinal segments in 57% (24/42) dogs
3y-5m-old, M, Boxer
peracute onset difficulty ambulating with PLs (L>R) while playing in the garden 7 hrs before presentation

- video
ANNPE- Diagnosis

- **Definitive diagnosis only histological**
- Survey radiographs
 - rule out vertebral fracture, sub-luxation/ luxation, neoplasia and osteomyelitis/ discospondylitis
- Myelography
 - rule out compressive SC disease (IVD extrusion, neoplasia)
 - intramedullary pattern above a collapsed intervertebral disc space
- CT or CT- myelography
 - rule out compressive SC disease (IVD extrusion, neoplasia)
 - intramedullary pattern above a collapsed intervertebral disc space
- MRI
 - diagnostic imaging modality of choice
- CSF
ANNPE- Treatment

- Analgesia, Nursing care
- Anti-inflammatory medications
- Neuroprotection
- Exercise restriction 4-6 weeks
- Physical rehabilitation
ANNPE- Outcome

- Outcome successful in 28/42 (67%) dogs and unsuccessful in 14/42 (33%) dogs
- Prognostic factors:
 - loss of nociception
 - on univariate analysis
 - extent of the intramedullary hyperintensity on sagittal and transverse T2-weighted MR images
 - detection of intramedullary hypointensity on T2* GE images

De Risio JAVMA 2009
On multivariate analysis: maximal cross-sectional area of the intramedullary hyperintensity on transverse T2-w MRI was the best predictor of outcome.

THANK YOU FOR YOUR ATTENTION